89 research outputs found

    Heavy metal rules. I. Exoplanet incidence and metallicity

    Full text link
    Discovery of only handful of exoplanets required to establish a correlation between giant planet occurrence and metallicity of their host stars. More than 20 years have already passed from that discovery, however, many questions are still under lively debate: What is the origin of that relation? what is the exact functional form of the giant planet -- metallicity relation (in the metal-poor regime)?, does such a relation exist for terrestrial planets? All these question are very important for our understanding of the formation and evolution of (exo)planets of different types around different types of stars and are subject of the present manuscript. Besides making a comprehensive literature review about the role of metallicity on the formation of exoplanets, I also revisited most of the planet -- metallicity related correlations reported in the literature using a large and homogeneous data provided by the SWEET-Cat catalog. This study lead to several new results and conclusions, two of which I believe deserve to be highlighted in the abstract: i) The hosts of sub-Jupiter mass planets (∌\sim0.6 -- 0.9~M_{\jupiter}) are systematically less metallic than the hosts of Jupiter-mass planets. This result might be related to the longer disk lifetime and higher amount of planet building materials available at high metallicities, which allow a formation of more massive Jupiter-like planets. ii) Contrary to the previous claims, our data and results do not support the existence of a breakpoint planetary mass at 4~M_{\jupiter} above and below which planet formation channels are different. However, the results also suggest that planets of the same (high) mass can be formed through different channels depending on the (disk) stellar mass i.e. environmental conditions.Comment: Invited review, to appear in Geoscience

    Occurrence rates of small planets from HARPS: Focus on the Galactic context

    Full text link
    Context. The stars in the Milky Way thin and thick disks can be distinguished by several properties such as metallicity and kinematics. It is not clear whether the two populations also differ in the properties of planets orbiting the stars. In order to study this, a careful analysis of both the chemical composition and mass detection limits is required for a sufficiently large sample. Currently, this information is still limited only to large radial-velocity (RV) programs. Based on the recently published archival database of the High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph, we present a first analysis of low-mass (small) planet occurrence rates in a sample of thin- and thick-disk stars. Aims. We aim to assess the effects of stellar properties on planet occurrence rates and to obtain first estimates of planet occurrence rates in the thin and thick disks of the Galaxy. As a baseline for comparison, we also aim to provide an updated value for the small close-in planet occurrence rate and compare it to results of previous RV and transit (Kepler\textit{Kepler}) works. Methods. We used archival HARPS RV datasets to calculate detection limits of a sample of stars that were previously analysed for their elemental abundances. For stars with known planets we first subtracted the Keplerian orbit. We then used this information to calculate planet occurrence rates according to a simplified Bayesian model in different regimes of stellar and planet properties. Results. Our results suggest that metal-poor stars and more massive stars host fewer low-mass close-in planets. We find the occurrence rates of these planets in the thin and thick disks to be comparable. In the iron-poor regimes, we find these occurrence rates to be significantly larger at the high-α\alpha region (thick-disk stars) as compared with the low-α\alpha region (thin-disk stars). In general, we find the...Comment: 10 pages, 6 figures, accepted for publication in A&

    Discovery of two warm mini-Neptunes with contrasting densities orbiting the young K3V star TOI-815

    Get PDF
    We present the discovery and characterization of two warm mini-Neptunes transiting the K3V star TOI-815 in a K–M binary system. Analysis of its spectra and rotation period reveal the star to be young, with an age of 200−200+400 Myr. TOI-8l5b has a 11.2-day period and a radius of 2.94 ± 0.05 R⊕ with transits observed by TESS, CHEOPS, ASTEP, and LCOGT. The outer planet, TOI-8l5c, has a radius of 2.62 ± 0.10 R⊕, based on observations of three nonconsecutive transits with TESS; targeted CHEOPS photometry and radial velocity follow-up with ESPRESSO were required to confirm the 35-day period. ESPRESSO confirmed the planetary nature of both planets and measured masses of 7.6 ± 1.5 M⊕ (ρP = 1.64−0.31+0.33 g cm−3) and 23.5 ± 2.4 M⊕ (ρP = 7.2−1.0+1.1 g cm−3), respectively. Thus, the planets have very different masses, which is unusual for compact multi-planet systems. Moreover, our statistical analysis of mini-Neptunes orbiting FGK stars suggests that weakly irradiated planets tend to have higher bulk densities compared to those undergoing strong irradiation. This could be ascribed to their cooler atmospheres, which are more compressed and denser. Internal structure modeling of TOI-815b suggests it likely has a H-He atmosphere that constitutes a few percent of the total planet mass, or higher if the planet is assumed to have no water. In contrast, the measured mass and radius of TOI-815c can be explained without invoking any atmosphere, challenging planetary formation theories. Finally, we infer from our measurements that the star is viewed close to pole-on, which implies a spin-orbit misalignment at the 3σ level. This emphasizes the peculiarity of the system’s orbital architecture, and probably hints at an eventful dynamical history

    Estimating stellar birth radii and the time evolution of Milky Way’s ISM metallicity gradient

    Get PDF
    We present a semi-empirical, largelymodel-independent approach for estimatingGalactic birth radii, rbirth, for Milky Way disc stars. The technique relies on the justifiable assumption that a negative radial metallicity gradient in the interstellar medium (ISM) existed for most of the disc lifetime. Stars are projected back to their birth positions according to the observationally derived age and [Fe/H] with no kinematical information required. Applying our approach to the AMBRE:HARPS and HARPS–GTO local samples, we show that we can constrain the ISM metallicity evolution with Galactic radius and cosmic time, [Fe/H]ISM(r, t), by requiring a physically meaningful rbirth distribution. We find that the data are consistent with an ISM radial metallicity gradient that flattens with time from ~− 0.15 dex kpc−1 at the beginning of disc formation, to its measured present-day value (−0.07 dex kpc−1). We present several chemokinematical relations in terms of mono-rbirth populations. One remarkable result is that the kinematically hottest stars would have been born locally or in the outer disc, consistent with thick disc formation from the nested flares of mono-age populations and predictions from cosmological simulations. This phenomenon can be also seen in the observed age–velocity dispersion relation, in that its upper boundary is dominated by stars born at larger radii. We also find that the flatness of the local age–metallicity relation (AMR) is the result of the superposition of the AMRs of mono-rbirth populations, each with a well-defined negative slope. The solar birth radius is estimated to be 7.3 ± 0.6 kpc, for a current Galactocentric radius of 8 kpc

    Determination of stellar parameters for Ariel targets: a comparison analysis between different spectroscopic methods

    Get PDF
    Ariel has been selected as the next ESA M4 science mission and it is expected to be launched in 2028. During its 4-year mission, Ariel will observe the atmospheres of a large and diversified population of transiting exoplanets. A key factor for the achievement of the scientific goal of Ariel is the selection strategy for the definition of the input target list. A meaningful choice of the targets requires an accurate knowledge of the planet hosting star properties and this is necessary to be obtained well before the launch. In this work, we present the results of a bench-marking analysis between three different spectroscopic techniques used to determine stellar parameters for a selected number of targets belonging to the Ariel reference sample. We aim to consolidate a method that will be used to homogeneously determine the stellar parameters of the complete Ariel reference sample. Homogeneous, accurate and precise derivation of stellar parameters is crucial for characterising exoplanet-host stars and in turn is a key factor for the accuracy of the planet properties

    A compositional link between rocky exoplanets and their host stars

    Full text link
    Stars and planets both form by accreting material from a surrounding disk. Because they grow from the same material, theory predicts that there should be a relationship between their compositions. In this study, we search for a compositional link between rocky exoplanets and their host stars. We estimate the iron-mass fraction of rocky exoplanets from their masses and radii and compare it with the compositions of their host stars, which we assume reflect the compositions of the protoplanetary disks. We find a correlation (but not a 1:1 relationship) between these two quantities, with a slope of >4, which we interpret as being attributable to planet formation processes. Super-Earths and super-Mercuries appear to be distinct populations with differing compositions, implying differences in their formation processes.Comment: Authors' version of the manuscript. Published in Scienc

    Exoplanet Diversity in the Era of Space-based Direct Imaging Missions

    Full text link
    This whitepaper discusses the diversity of exoplanets that could be detected by future observations, so that comparative exoplanetology can be performed in the upcoming era of large space-based flagship missions. The primary focus will be on characterizing Earth-like worlds around Sun-like stars. However, we will also be able to characterize companion planets in the system simultaneously. This will not only provide a contextual picture with regards to our Solar system, but also presents a unique opportunity to observe size dependent planetary atmospheres at different orbital distances. We propose a preliminary scheme based on chemical behavior of gases and condensates in a planet's atmosphere that classifies them with respect to planetary radius and incident stellar flux.Comment: A white paper submitted to the National Academy of Sciences Exoplanet Science Strateg
    • 

    corecore